Правило лопиталя для чайников

Правило Лопиталя с примерами

Правило Лопиталя (п. Л.) облегчает вычисление пределов функций. Например, надо найти предел функции, которая является отношением функций стремящихся к нулю. Т.е. отношение функций это неопределенность 0/0. Раскрыть ее поможет правило Лопиталя. В пределе отношение функций можно заменить отношением производных этих функций. Т.е. надо производную числителя разделить на производную знаменателя и от этой дроби взять предел.

1. Неопределенность 0/0. Первое п.Л.

Если = 0, то , если последний существует.

2. Неопределенность вида ∞/∞ Второе п. Л.

Нахождение пределов такого типа называется раскрытием неопределенностей.

Если = ∞, то , если последний существует.

3. Неопределенности 0⋅∞, ∞- ∞, 1 ∞ и 0 0 сводятся к неопределенностям 0/0 и ∞/∞ путем преобразований. Такая запись служит для краткого указания случая при отыскании предела. Каждая неопределенность раскрывается по своему. Правило Лопиталя можно применять несколько раз, пока не избавимся от неопределенности. Применение правила Лопиталя приносит пользу тогда, когда отношение производных удается преобразовать к более удобному виду легче, чем отношение функций.

  • 0⋅∞ произведение двух функций, первая стремится к нулю, вторая к бесконечности;
  • ∞- ∞ разность функций, стремящихся к бесконечности;
  • 1 ∞ степень, ее основание стремится к единице, а показатель к бесконечности;
  • ∞ 0 степень, ее основание стремится к бесконечности, а степень к нулю;
  • 0 0 степень, ее основание стремится к 0 и показатель тоже стремятся к нулю.

Пример 1. В этом примере неопределенность 0/0

Пример 2. Здесь ∞/∞

В этих примерах производные числителя делим на производные знаменателя и подставляем предельное значение вместо х.

Пример 3. Вид неопределенности 0⋅∞ .

Неопределенность 0⋅∞ преобразуем к ∞/∞, для этого х переносим в знаменатель в виде дроби 1/x , в числителе пишем производную от числителя, а в знаменателе производную от знаменателя.

Пример 4 Вычислить предел функции

Здесь неопределенность вида ∞ 0 Сначала логарифмируем функцию, затем найдем от нее предел

Для получения ответа надо е возвести в степень -1, получим e -1 .

Пример 5. Вычислить предел от если x → 0

Решение. Вид неопределенности ∞ -∞ Приведя дробь к общему знаменателю перейдем от ∞-∞ к 0/0. Применим правило Лопиталя, однако снова получим неопределенность 0/0, поэтому п. Л. надо применить второй раз. Решение имеет вид:

= = = =
= =

Пример 6 Решить

Решение. Вид неопределенности ∞/∞, раскрыв ее получим

= = = 0.

В случаях 3), 4), 5) сначала логарифмируют функцию и находят предел логарифма, а затем искомый предел е возводим в полученную степень.

Пример 7. Вычислить предел

Решение. Здесь вид неопределенности 1 ∞ . Обозначим A =

Тогда lnA = = = = 2.

Основание логарифма е, поэтому для получения ответа надо е возвести в квадрат, получим e 2 .

Иногда бывают случаи, когда отношение функций имеет предел, в отличие от отношения производных, которое не имеет его.

Т.к. sinx ограничен, а х неограниченно растет, второй член равен 0.

Эта функция не имеет предела, т.к. она постоянно колеблется между 0 и 2, к этому примеру неприменимо п. Л.

www.mathelp.spb.ru

Правило Лопиталя

В математическом анализе правилом Лопита́ля называют метод нахождения пределов функций, раскрывающий неопределённости вида $ 0/0 $ и $ \infty/\infty $ . Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.

Содержание

Точная формулировка Править

Правило говорит, что если функции $ f(x) $ и $ g(x) $ обладают следующим набором условий:

тогда существует $ \lim_<\frac> = \lim_<\frac> $ . При этом теорема верна и для других баз (для указанной будет приведено доказательство).

История Править

Способ раскрытия такого рода неопределённостей был опубликован Лопиталем в его сочинении «Анализ бесконечно малых», изданном в 1696 году. В предисловии к этому сочинению Лопиталь указывает, что без всякого стеснения пользовался открытиями Лейбница и братьев Бернулли и «не имеет ничего против того, чтобы они предъявили свои авторские права на все, что им угодно». Иоганн Бернулли предъявил претензии на все сочинение Лопиталя целиком и в частности после смерти Лопиталя опубликовал работу под примечательным названием «Усовершенствование моего опубликованнного в „Анализе бесконечно малых“ метода для определения значения дроби, числитель и знаменатель которой иногда исчезают», 1704.

Доказательство Править

1. Докажем теорему для случая, когда пределы функций равны нулю (т. н. неопределённость вида $ \left(\frac<0><0>\right) $ ).

Поскольку мы рассматриваем функции $ f $ и $ g $ только в правой проколотой полуокрестности точки $ a $ , мы можем непрерывным образом их доопределить в этой точке: пусть $ f(a)=g(a)=0 $ . Возьмём некоторый $ x $ из рассматриваемой полуокрестности и применим к отрезку $ [a,\;x] $ теорему Коши. По этой теореме получим:

но $ f(a)=g(a)=0 $ , поэтому $ \forall x\, \exists c \in [a,\;x]\!:\frac=\frac $ .

Дальше, записав определение предела отношения производных и обозначив последний через $ A $ , из полученного равенства выводим:

$ \forall \varepsilon>0\, \exists \delta>0\, \forall x(x-a $ \forall M > 0\, \exists \delta>0\, \forall x(x-a M) $ для бесконечного,

что является определением предела отношения функций.

2. Докажем теорему для неопределённостей вида $ \left(\frac<\infty><\infty>\right) $ .

Пусть, для начала, предел отношения производных конечен и равен $ A $ . Тогда, при стремлении $ x $ к $ a $ справа, это отношение можно записать как $ A+\alpha $ , где $ \alpha $ — O(1). Запишем это условие:

$ \forall\varepsilon_<1>\, \exists \delta_<1>\, \forall x(x-a

Зафиксируем $ t $ из отрезка $ [a,\;a+\delta_1] $ и применим теорему Коши ко всем $ x $ из отрезка $ [a,\;t] $ :

Для $ x $ , достаточно близких к $ a $ , выражение имеет смысл; предел первого множителя правой части равен единице (так как $ f(t) $ и $ g(t) $ — константы, а $ f(x) $ и $ g(x) $ стремятся к бесконечности). Значит, этот множитель равен $ 1+\beta $ , где $ \beta $ — бесконечно малая функция при стремлении $ x $ к $ a $ справа. Выпишем определение этого факта, используя то же значение $ \varepsilon $ , что и в определении для $ \alpha $ :

$ \forall \varepsilon_<1>\, \exists \delta_<2>\, \forall x(x-a

Получили, что отношение функций представимо в виде $ (1+\beta)(A+\alpha) $ , и $ \left|\frac-A\right| $ \forall M>0\, \exists \delta_<1>>0\, \forall x(x-a 2M) $ .

В определении $ \beta $ будем брать $ \varepsilon_ <1>\frac<1><2>\cdot 2M=M\Rightarrow \lim_<\frac>=+\infty $ .

Для других баз доказательства аналогичны приведённым.

ru.math.wikia.com

Правило Лопиталя для чайников: определение, примеры решения, формулы

Мы уже начали разбираться с пределами и их решением. Продолжим по горячим следам и разберемся с решением пределов по правилу Лопиталя. Этому простому правилу по силам помочь Вам выбраться из коварных и сложных ловушек, которые преподаватели так любят использовать в примерах на контрольных по высшей математике и матанализу. Решение правилом Лопиталя – простое и быстрое. Главное – уметь дифференцировать.

Правило Лопиталя: история и определение

На самом деле это не совсем правило Лопиталя, а правило Лопиталя-Бернулли. Сформулировал его швейцарский математик Иоганн Бернулли, а француз Гийом Лопиталь впервые опубликовал в своем учебнике бесконечно малых в славном 1696 году. Представляете, как людям приходилось решать пределы с раскрытием неопределенностей до того, как это случилось? Мы – нет.

Кстати, о том, какой вклад внес в науку сын Иоганна Бернулли, читайте в статье про течение жидкостей и уравнение Бернулли.

Прежде чем приступать к разбору правила Лопиталя, рекомендуем прочитать вводную статью про пределы в математике и методы их решений. Часто в заданиях встречается формулировка: найти предел, не используя правило Лопиталя. О приемах, которые помогут Вам в этом, также читайте в нашей статье.

Если имеешь дело с пределами дроби двух функций, будь готов: скоро встретишься с неопределенностью вида 0/0 или бесконечность/бесконечность. Как это понимать? В числителе и знаменателе выражения стремятся к нулю или бесконечности. Что делать с таким пределом, на первый взгляд – совершенно непонятно. Однако если применить правило Лопиталя и немного подумать, все становится на свои места.

Но сформулируем правило Лопиталя-Бернулли. Если быть совершенно точными, оно выражается теоремой. Правило Лопиталя, определение:

Если две функции дифференцируемы в окрестности точки x=a обращаются в нуль в этой точке, и существует предел отношения производных этих функций, то при х стремящемся к а существует предел отношения самих функций, равный пределу отношения производных.

Запишем формулу, и все сразу станет проще. Правило Лопиталя, формула:

Так как нас интересует практическая сторона вопроса, не будем приводить здесь доказательство этой теоремы. Вам придется или поверить нам на слово, или найти его в любом учебнике по математическому анализу и убедится, что теорема верна.

Раскрытие неопределенностей по правилу Лопиталя

В раскрытии каких неопределенностей может помочь правило Лопиталя? Ранее мы говорили в основном о неопределенности 0/0. Однако это далеко не единственная неопределенность, с которой можно встретиться. Вот другие виды неопределенностей:

Рассмотрим преобразования, с помощью которых можно привести эти неопределенности к виду 0/0 или бесконечность/бесконечность. После преобразования можно будет применять правило Лопиталя-Бернулли и щелкать примеры как орешки.

Неопределенность вида бесконечность/бесконечность сводится к неопределенность вида 0/0 простым преобразованием:

Пусть есть произведение двух функций, одна из которых первая стремиться к нулю, а вторая – к бесконечности. Применяем преобразование, и произведение нуля и бесконечности превращается в неопределенность 0/0:

Для нахождения пределов с неопределенностями типа бесконечность минус бесконечность используем следующее преобразование, приводящее к неопределенности 0/0:

Для того чтобы пользоваться правилом Лопиталя, нужно уметь брать производные. Приведем ниже таблицу производных элементарных функций, которой Вы сможете пользоваться при решении примеров, а также правила вычисления производных сложных функций:

Теперь перейдем к примерам.

Найти предел по правилу Лопиталя:

Вычислить с использованием правила Лопиталя:

Важный момент! Если предел вторых и последующих производных функций существует при х стремящемся к а, то правило Лопиталя можно применять несколько раз.

Найдем предел (n – натуральное число). Для этого применим правило Лопиталя n раз:

Желаем удачи в освоении математического анализа. А если Вам понадобится найти предел используя правило Лопиталя, написать реферат по правилу Лопиталя, вычислить корни дифференциального уравнения или даже рассчитать тензор инерции тела, обращайтесь к нашим авторам. Они с радостью помогут разобраться в тонкостях решения.

zen.yandex.ru

Правило Лопиталя для чайников: определение, примеры решения, формулы

Мы уже начали разбираться с пределами и их решением. Продолжим по горячим следам и разберемся с решением пределов по правилу Лопиталя. Этому простому правилу по силам помочь Вам выбраться из коварных и сложных ловушек, которые преподаватели так любят использовать в примерах на контрольных по высшей математике и матанализу. Решение правилом Лопиталя – простое и быстрое. Главное – уметь дифференцировать.

Правило Лопиталя: история и определение

На самом деле это не совсем правило Лопиталя, а правило Лопиталя-Бернулли. Сформулировал его швейцарский математик Иоганн Бернулли, а француз Гийом Лопиталь впервые опубликовал в своем учебнике бесконечно малых в славном 1696 году. Представляете, как людям приходилось решать пределы с раскрытием неопределенностей до того, как это случилось? Мы – нет.

Кстати, о том, какой вклад внес в науку сын Иоганна Бернулли, читайте в статье про течение жидкостей и уравнение Бернулли.

Пределы

Прежде чем приступать к разбору правила Лопиталя, рекомендуем прочитать вводную статью про пределы в математике и методы их решений. Часто в заданиях встречается формулировка: найти предел, не используя правило Лопиталя. О приемах, которые помогут Вам в этом, также читайте в нашей статье.

Если имеешь дело с пределами дроби двух функций, будь готов: скоро встретишься с неопределенностью вида 0/0 или бесконечность/бесконечность. Как это понимать? В числителе и знаменателе выражения стремятся к нулю или бесконечности. Что делать с таким пределом, на первый взгляд – совершенно непонятно. Однако если применить правило Лопиталя и немного подумать, все становится на свои места.

Но сформулируем правило Лопиталя-Бернулли. Если быть совершенно точными, оно выражается теоремой. Правило Лопиталя, определение:

Если две функции дифференцируемы в окрестности точки x=a обращаются в нуль в этой точке, и существует предел отношения производных этих функций, то при х стремящемся к а существует предел отношения самих функций, равный пределу отношения производных.

Запишем формулу, и все сразу станет проще. Правило Лопиталя, формула:

Так как нас интересует практическая сторона вопроса, не будем приводить здесь доказательство этой теоремы. Вам придется или поверить нам на слово, или найти его в любом учебнике по математическому анализу и убедится, что теорема верна.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Раскрытие неопределенностей по правилу Лопиталя

В раскрытии каких неопределенностей может помочь правило Лопиталя? Ранее мы говорили в основном о неопределенности 0/0. Однако это далеко не единственная неопределенность, с которой можно встретиться. Вот другие виды неопределенностей:

Рассмотрим преобразования, с помощью которых можно привести эти неопределенности к виду 0/0 или бесконечность/бесконечность. После преобразования можно будет применять правило Лопиталя-Бернулли и щелкать примеры как орешки.

Неопределенности

Неопределенность вида бесконечность/бесконечность сводится к неопределенность вида 0/0 простым преобразованием:

Пусть есть произведение двух функций, одна из которых первая стремиться к нулю, а вторая – к бесконечности. Применяем преобразование, и произведение нуля и бесконечности превращается в неопределенность 0/0:

Для нахождения пределов с неопределенностями типа бесконечность минус бесконечность используем следующее преобразование, приводящее к неопределенности 0/0:

Для того чтобы пользоваться правилом Лопиталя, нужно уметь брать производные. Приведем ниже таблицу производных элементарных функций, которой Вы сможете пользоваться при решении примеров, а также правила вычисления производных сложных функций:

Таблица производных

Теперь перейдем к примерам.

Найти предел по правилу Лопиталя:

Вычислить с использованием правила Лопиталя:

Важный момент! Если предел вторых и последующих производных функций существует при х стремящемся к а, то правило Лопиталя можно применять несколько раз.

Найдем предел (n – натуральное число). Для этого применим правило Лопиталя n раз:

Желаем удачи в освоении математического анализа. А если Вам понадобится найти предел используя правило Лопиталя, написать реферат по правилу Лопиталя, вычислить корни дифференциального уравнения или даже рассчитать тензор инерции тела, обращайтесь к нашим авторам. Они с радостью помогут разобраться в тонкостях решения.

zaochnik.ru

Высшая математика для «чайников». Предел функции. Виосагмир И.А.

Интернет-издание, 2011. — 88 с.

«Так чем же моя книга отличается от всех других? Во-первых, здесь нормальный язык, а не “заумный”; во-вторых здесь разобрана масса примеров, которая, кстати, наверняка, пригодится вам; в-третьих, текст имеет существенное различие между собой – главные вещи выделены определенными маркерами, и наконец, моя цель лишь одна – ваше понимание. От Вас требуется только одного: желания и умения.

Формат: pdf / zip (в файле для скачивания также «Производные и дифференциалы». Гл.1. Производная функции. Пр.1. Самое главное о производной. -7стр.)

Содержание
Первая глава: Предел функции
1. Предел функции в точке
2. Теоремы о пределах
3. Односторонние пределы
4. Предел, при x > ?5. Бесконечно большие функции
6. Графики элементарных функций
Вторая глава: Непрерывность функции в точке
1. Непрерывность функции в точке
2. Непрерывность сложной функции.
3. Классификация точек разрыва
4. Непрерывность элементарных функций
5. Первый замечательный предел
6. Второй замечательный предел
7. Кратко о Maple
Третья глава: Бесконечно малые функции
1. Сравнение бесконечно малых функций
2. Свойства символа “o малое”
3. Асимптотические формулы
Четвертая глава: Дополнительные методы
1. Правило Лопиталя
2. Разложение в ряд Тейлора. Часть 1
3. Разложение в ряд Тейлора. Часть 2

О том, как читать книги в форматах pdf , djvu — см. раздел » Программы; архиваторы; форматы pdf, djvu и др. «

www.alleng.ru

admin